Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 206: 108224, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091930

RESUMO

The world's low-lying rice (Oryza sativa) cultivation areas are under threat of submergence or flash flooding due to global warming. Rice plants manifest a variety of physiological and morphological changes to cope with submergence and hypoxia, including lowering carbohydrate consumption, inhibiting shoot elongation, and forming a thicker leaf gas film during submergence. Functional studies have revealed that submergence tolerance in rice is mainly determined by an ethylene response factor (ERF) transcription factor-encoding gene, namely SUBMERGENCE 1A-1 (SUB1A-1) located in the SUB1 quantitative trait locus. The SUB1A-1-dependent submergence tolerance is manifested through hormonal signaling involving ethylene, gibberellic acid, brassinosteroid, auxin and jasmonic acid. Considerable progress has been made toward the introduction of SUB1A-1 into rice varieties through a conventional marker-assisted backcrossing approach. Here, we review the recent advances in the physiological, biochemical and molecular dynamics of rice submergence tolerance mediated by the 'quiescence strategy'. Thus, the present review aims to provide researchers with insights into the genetics of rice submergence tolerance and future perspectives for designing submergence-resilient plants for sustainable agriculture under the uncertainties of climate change.


Assuntos
Oryza , Oryza/fisiologia , Etilenos/farmacologia , Genes de Plantas , Folhas de Planta/fisiologia , Adaptação Fisiológica/genética
2.
Plant Cell Physiol ; 63(12): 1927-1942, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35997763

RESUMO

Plants activate a myriad of signaling cascades to tailor adaptive responses under environmental stresses, such as salinity. While the roles of exogenous karrikins (KARs) in salt stress mitigation are well comprehended, genetic evidence of KAR signaling during salinity responses in plants remains unresolved. Here, we explore the functions of the possible KAR receptor KARRIKIN-INSENSITIVE2 (KAI2) in Arabidopsis thaliana tolerance to salt stress by investigating comparative responses of wild-type (WT) and kai2-mutant plants under a gradient of NaCl. Defects in KAI2 functions resulted in delayed and inhibited cotyledon opening in kai2 seeds compared with WT seeds, suggesting that KAI2 played an important role in enhancing seed germination under salinity. Salt-stressed kai2 plants displayed more phenotypic aberrations, biomass reduction, water loss and oxidative damage than WT plants. kai2 shoots accumulated significantly more Na+ and thus had a lower K+/Na+ ratio, than WT, indicating severe ion toxicity in salt-stressed kai2 plants. Accordingly, kai2 plants displayed a lower expression of genes associated with Na+ homeostasis, such as SALT OVERLY SENSITIVE (SOS) 1, SOS2, HIGH-AFFINITY POTASSIUM TRANSPORTER 1;1 (HKT1;1) and CATION-HYDROGEN EXCHANGER 1 (NHX1) than WT plants. WT plants maintained a better glutathione level, glutathione-related redox status and antioxidant enzyme activities relative to kai2 plants, implying KAI2's function in oxidative stress mitigation in response to salinity. kai2 shoots had lower expression levels of genes involved in the biosynthesis of strigolactones (SLs), salicylic acid and jasmonic acid and the signaling of abscisic acid and SLs than those of WT plants, indicating interactive functions of KAI2 signaling with other hormone signaling in modulating plant responses to salinity. Collectively, these results underpin the likely roles of KAI2 in the alleviation of salinity effects in plants by regulating several physiological and biochemical mechanisms involved in ionic and osmotic balance, oxidative stress tolerance and hormonal crosstalk.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Tolerância ao Sal/genética , Proteínas de Transporte/metabolismo , Glutationa/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Antioxidants (Basel) ; 11(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35326166

RESUMO

Drought is a major environmental threat to agricultural productivity and food security across the world. Therefore, addressing the detrimental effects of drought on vital crops like soybean has a significant impact on sustainable food production. Priming plants with organic compounds is now being considered as a promising technique for alleviating the negative effects of drought on plants. In the current study, we evaluated the protective functions of ethanol in enhancing soybean drought tolerance by examining the phenotype, growth attributes, and several physiological and biochemical mechanisms. Our results showed that foliar application of ethanol (20 mM) to drought-stressed soybean plants increased biomass, leaf area per trifoliate, gas exchange features, water-use-efficiency, photosynthetic pigment contents, and leaf relative water content, all of which contributed to the improved growth performance of soybean under drought circumstances. Drought stress, on the other hand, caused significant accumulation of reactive oxygen species (ROS), such as superoxide and hydrogen peroxide, and malondialdehyde, as well as an increase of electrolyte leakage in the leaves, underpinning the evidence of oxidative stress and membrane damage in soybean plants. By comparison, exogenous ethanol reduced the ROS-induced oxidative burden by boosting the activities of antioxidant enzymes, including peroxidase, catalase, glutathione S-transferase, and ascorbate peroxidase, and the content of total flavonoids in soybean leaves exposed to drought stress. Additionally, ethanol supplementation increased the contents of total soluble sugars and free amino acids in the leaves of drought-exposed plants, implying that ethanol likely employed these compounds for osmotic adjustment in soybean under water-shortage conditions. Together, our findings shed light on the ethanol-mediated protective mechanisms by which soybean plants coordinated different morphophysiological and biochemical responses in order to increase their drought tolerance.

4.
Molecules ; 26(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946396

RESUMO

The increasing culinary use of onion (Alium cepa) raises pressure on the current production rate, demanding sustainable approaches for increasing its productivity worldwide. Here, we aimed to investigate the beneficial effects of licorice (Glycyrrhiza glabra) root extract (LRE) in improving growth, yield, nutritional status, and antioxidant properties of two high-yielding onion cultivars, Shandaweel and Giza 20, growing under field conditions in two consecutive years. Our results revealed that pretreatments of both onion cultivars with LRE exhibited improved growth indices (plant height and number of leaves) and yield-related features (bulb length, bulb diameter, and bulb weight) in comparison with the corresponding LRE-devoid control plants. Pretreatments with LRE also improved the nutritional and antioxidant properties of bulbs of both cultivars, which was linked to improved mineral (e.g., K+ and Ca2+) acquisition, and heightened activities of enzymatic antioxidants (e.g., superoxide dismutase, catalase, ascorbate peroxidase, glutathione peroxidase, and glutathione S-transferase) and increased levels of non-enzymatic antioxidants (e.g., ascorbic acid, reduced glutathione, phenolics, and flavonoids). LRE also elevated the contents of proline, total free amino acids, total soluble carbohydrates, and water-soluble proteins in both onion bulbs. In general, both cultivars displayed positive responses to LRE pretreatments; however, the Shandaweel cultivar performed better than the Giza 20 cultivar in terms of yield and, to some extent, bulb quality. Collectively, our findings suggest that the application of LRE as biostimulant might be an effective strategy to enhance bulb quality and ultimately the productivity of onion cultivars under field conditions.


Assuntos
Antioxidantes/farmacologia , Produção Agrícola , Glycyrrhiza/química , Cebolas/efeitos dos fármacos , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Aminoácidos/metabolismo , Antioxidantes/química , Biomarcadores , Metabolismo dos Carboidratos , Cebolas/fisiologia , Oxirredução , Fotossíntese , Pigmentos Biológicos/biossíntese , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo
5.
Physiol Plant ; 172(2): 1363-1375, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33462814

RESUMO

Melatonin has recently emerged as a multifunctional biomolecule with promising aspects in plant stress tolerance. The present study examined the effects of foliar-sprayed melatonin (0, 100, and 200 µM) on growth and essential oil yield attributes of lemon verbena (Lippia citriodora) under water-shortage (mild, moderate and severe). Results revealed that melatonin minimized drought effects on lemon verbena, resulting in improved growth and essential oils yield. Drought impositions gradually and significantly reduced several growth parameters, such as plant height and biomass, whereas melatonin application revived the growth performance of lemon verbena. Melatonin protected the photosynthetic pigments and helped maintain the mineral balance at all levels of drought. Melatonin stimulated the accumulation of proline, soluble sugars and abscisic acid, which were positively correlated with a better preservation of leaf water status in drought-stressed plants. Melatonin also prevented oxidative damages by enhancing the superoxide dismutase, ascorbate peroxidase and catalase activities. Furthermore, increased levels of total phenolic compounds, chicoric acid, caffeic acid and chlorogenic acid, as well as ascorbate and total antioxidant capacity in melatonin-sprayed drought-stressed plants indicated that melatonin helped verbena plants to sustain antioxidant and medicinal properties during drought. Finally, melatonin treatments upheld the concentrations and yield of essential oils in the leaves of lemon verbena regardless of drought severities. These results provided new insights into melatonin-mediated drought tolerance in lemon verbena, and this strategy could be implemented for the successful cultivation of lemon verbena, and perhaps other medicinal plants, in drought-prone areas worldwide.


Assuntos
Melatonina , Óleos Voláteis , Ácido Abscísico , Antioxidantes , Secas , Melatonina/farmacologia , Minerais , Óleos Voláteis/farmacologia , Verbenaceae
6.
Physiol Plant ; 172(2): 334-350, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32797626

RESUMO

Exposure to drought stress negatively affects plant productivity and consequently threatens global food security. As global climates change, identifying solutions to increase the resilience of plants to drought is increasingly important. Several chemical treatments have recently emerged as promising techniques for various individual and combined abiotic stresses. This study shows compelling evidence on how acetic acid application promotes drought acclimation responses in soybean by investigating several morphological, physiological and biochemical attributes. Foliar applications of acetic acid to drought-exposed soybean resulted in improvements in root biomass, leaf area, photosynthetic rate and water use efficiency; leading to improved growth performance. Drought-induced accumulation of reactive oxygen species, and the resultant increased levels of malondialdehyde and electrolyte leakage, were considerably reverted by acetic acid treatment. Acetic acid-sprayed plants suffered less oxidative stress due to the enhancement of antioxidant defense mechanisms, as evidenced by the increased activities of superoxide dismutase, ascorbate peroxidase, catalase, glutathione peroxidase and glutathione S-transferase. Improved shoot relative water content was also linked to the increased levels of soluble sugars and free amino acids, indicating a better osmotic adjustment following acetic acid treatment in drought-exposed plants. Acetic acid also increased stem/root, leaf/stem and leaf/root mineral ratios and improved overall mineral status in drought-stressed plants. Taken together, our results demonstrated that acetic acid treatment enabled soybean plants to positively regulate photosynthetic ability, water balance, mineral homeostasis and antioxidant responses; thereby suggesting acetic acid as a cost-effective and easily accessible chemical for the management of soybean growth and productivity in drought-prone areas.


Assuntos
Antioxidantes , Secas , Aclimatação , Ácido Acético/farmacologia , Minerais , Osmorregulação , Fotossíntese , Glycine max , Estresse Fisiológico , Água
7.
J Biotechnol ; 325: 109-118, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33188807

RESUMO

Complete submergence (Sub) imposes detrimental effects on growth and survival of crop plants, including rice. Here, we investigated the beneficial effects of reduced glutathione (GSH) in mitigating Sub-induced adverse effects in two high-yielding rice cultivars BRRI dhan29 and dhan52. Both cultivars experienced growth defects, severe yellowing, necrosis and chlorosis, when they were completely immersed in water for 14 days. The poor growth performance of these cultivars was linked to biomass reduction, decreased levels of photosynthetic pigments and proline, increased levels of H2O2 and malondialdehyde, and declined activities of enzymatic antioxidants like superoxide dismutase, ascorbate peroxidase, peroxidase, catalase, glutathione peroxidase and glutathione S-transferase. Pretreatment with exogenous GSH led to significant growth restoration in both cultivars exposed to Sub. The elevated Sub-tolerance promoted by GSH could partly be attributed to increased levels of chlorophylls, carotenoids, soluble proteins and proline. Exogenous GSH also mitigated Sub-induced oxidative damage, as evidenced from reduced levels of H2O2 and malondialdehyde in accordance with the increased activities of antioxidant enzymes. Results revealed that dhan52 was more tolerant to Sub-stress than dhan29, and GSH successfully rescued both cultivars from the damage of Sub-stress. Collectively, our findings provided an insight into the GSH-mediated active recovery of rice from Sub-stress, thereby suggesting that external supply of GSH may be an effective strategy to mitigate the adverse effects of Sub in rice.


Assuntos
Glutationa , Oryza , Antioxidantes , Catalase/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio , Oryza/metabolismo , Estresse Oxidativo , Plântula/metabolismo , Superóxido Dismutase/metabolismo
8.
J Hazard Mater ; 394: 122572, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32283381

RESUMO

We investigated the mechanistic consequences of selenium (Se)-toxicity, and its possible mitigation using salicylic acid (SA) in rice. In comparison with control, sodium selenate-exposed 'Se1' (0.5 mM) and 'Se2' (1.0 mM) plants showed accumulation of Se by 190.63 and 288.00 % in roots, 2359.42 and 2054.35 % in leaf sheaths, and 7869.91 and 9063.72 % in leaves, respectively, resulting in severe toxicity symptoms, such as growth inhibition, chlorosis, burning of leaves, and oxidative stress. In contrast, SA addition to Se-stressed plants significantly alleviated the Se-toxicity symptoms, and radically improved shoot height (28.88 %), dry biomass (34.00 %), total chlorophyll (37.51 %), soluble sugar (17.31 %) and leaf water contents (22.31 %) in 'SA + Se2' plants over 'Se2' plants. Notably, SA maintained Se-homeostasis, and decreased 'Se2'-induced oxidative stress by enhancing ascorbate level (67.75 %) and the activities of antioxidant enzymes like superoxide dismutase (20.99 %), catalase (40.97 %), glutathione peroxidase (12.26 %), and glutathione reductase (32.58 %) relative to that in 'Se2' plants. Additionally, SA protected rice plants from the deleterious effects of methylglyoxal by stimulating the activities of glyoxalase enzymes. Furthermore, SA upregulated several genes associated with reactive oxygen species (e.g. OsCuZnSOD1, OsCATB, OsGPX1 and OsAPX2) and methylglyoxal (e.g. OsGLYI-1) detoxifications. These findings unravel a decisive role of SA in alleviating Se-phytotoxicity in rice.


Assuntos
Oryza , Selênio , Antioxidantes , Glutationa/metabolismo , Homeostase , Oryza/metabolismo , Estresse Oxidativo , Aldeído Pirúvico/toxicidade , Ácido Salicílico/toxicidade , Selênio/toxicidade
9.
Int J Mol Sci ; 20(22)2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31752185

RESUMO

Cadmium (Cd) is one of the prominent environmental hazards, affecting plant productivity and posing human health risks worldwide. Although salicylic acid (SA) and nitric oxide (NO) are known to have stress mitigating roles, little was explored on how they work together against Cd-toxicity in rice. This study evaluated the individual and combined effects of SA and sodium nitroprusside (SNP), a precursor of NO, on Cd-stress tolerance in rice. Results revealed that Cd at toxic concentrations caused rice biomass reduction, which was linked to enhanced accumulation of Cd in roots and leaves, reduced photosynthetic pigment contents, and decreased leaf water status. Cd also potentiated its phytotoxicity by triggering reactive oxygen species (ROS) generation and depleting several non-enzymatic and enzymatic components in rice leaves. In contrast, SA and/or SNP supplementation with Cd resulted in growth recovery, as evidenced by greater biomass content, improved leaf water content, and protection of photosynthetic pigments. These signaling molecules were particularly effective in restricting Cd uptake and accumulation, with the highest effect being observed in "SA + SNP + Cd" plants. SA and/or SNP alleviated Cd-induced oxidative damage by reducing ROS accumulation and malondialdehyde production through the maintenance of ascorbate and glutathione levels, and redox status, as well as the better activities of antioxidant enzymes superoxide dismutase, catalase, glutathione S-transferase, and monodehydroascorbate reductase. Combined effects of SA and SNP were observed to be more prominent in Cd-stress mitigation than the individual effects of SA followed by that of SNP, suggesting that SA and NO in combination more efficiently boosted physiological and biochemical responses to alleviate Cd-toxicity than either SA or NO alone. This finding signifies a cooperative action of SA and NO in mitigating Cd-induced adverse effects in rice, and perhaps in other crop plants.


Assuntos
Cádmio/toxicidade , Nitroprussiato/farmacologia , Oryza/crescimento & desenvolvimento , Ácido Salicílico/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Sinergismo Farmacológico , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Óxido Nítrico/metabolismo , Oryza/efeitos dos fármacos , Oryza/metabolismo , Fotossíntese , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Água/metabolismo
10.
Plant Physiol Biochem ; 138: 100-111, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30856414

RESUMO

Hydrogen sulfide (H2S) modulates plant tolerance to abiotic stresses, but its regulatory effects on nitrogen metabolism and chloroplast protection under nickel (Ni) stress in crop plants remain elusive. Taking this into account, we investigated the potential roles of sodium hydrosulfide (NaHS), a H2S generator, in the improvement of growth performance of rice plants under Ni stress. Results showed that NaHS successfully reversed the adverse effects of Ni, as reflected in plant growth and biomass, and photosynthesis attributes including photosynthetic rates, stomatal conductance, transpiration rate, internal CO2 concentration and photosynthetic pigment contents. NaHS generated H2S plays a crucial role in controlling the photosynthetic machinery of rice as evidenced by the ultrastructure of chloroplast viewed under transmission electron microscope (TEM). The reduced content of Ni in roots and leaves of NaHS-supplemented Ni-stressed plants has revealed the restricted uptake and accumulation of Ni. A rescue of NaHS to the Ni-induced decline in nitrate (NO3-) content and the activities NO3- biosynthesizing enzymes nitrate reductase, nitrite reductase, glutamate synthase, glutamate oxaloacetate transaminase, glutamine synthetase, and glutamate pyruvate transaminase in leaves indicated a positive role of H2S on NO3- metabolism in rice under Ni stress. NaHS application also reverted Ni-mediated increases in ammonium (NH4+) content and glutamate dehydrogenase activity, implying H2S-induced alleviation of NH4+ toxicity. The regulatory effects of H2S on nitrogen metabolism was further confirmed by increased and decreased transcript abundance of NO3- and NH4+ metabolism associated genes, respectively. Our study suggests a decisive role of H2S in controlling Ni toxicity as elucidated by the novel findings such as enhanced gas exchanged parameters, Ni homeostasis and chloroplast protection. Moreover, this article highlights the significance of H2S in controlling chloroplast biogenesis and nitrogen metabolism in rice crop under Ni stress.


Assuntos
Cloroplastos/metabolismo , Sulfeto de Hidrogênio/farmacologia , Níquel/toxicidade , Nitrogênio/metabolismo , Oryza/crescimento & desenvolvimento , Proteínas de Cloroplastos/biossíntese
11.
Chemosphere ; 191: 23-35, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29028538

RESUMO

Soil contamination with nickel (Ni) is a persistent threat to crop production worldwide. The present study examined the putative roles of nitric oxide (NO) in improving Ni-tolerance in rice. Our findings showed that application of exogenous sodium nitroprusside (SNP), a NO donor, significantly improved the growth performance of rice seedlings when grown under excessive Ni. The enhanced Ni-tolerance of rice prompted by SNP could be ascribed to its ability to regulate Ni uptake, decrease Ni-induced oxidative stress as evidenced by reduced levels of hydrogen peroxide, malondialdehyde, and electrolyte leakage in Ni-stressed plants. The positive roles of NO against Ni-toxicity also reflected through its protective effects on photosynthetic pigments, soluble proteins and proline. SNP also boosted antioxidant capacity in Ni-stressed plants by maintaining increased levels of ascorbate, enhanced activities of ROS-detoxifying enzymes, particularly peroxidase (POD) and catalase (CAT) in both roots and shoots compared with Ni-stressed alone plants. Moreover, SNP treatment also upregulated the transcript levels of CAT, POD, ascorbate peroxidase, glutathione reductase and superoxide dismutase genes in shoots under Ni-stress. Using different sulfide compounds and NO scavenger cPTIO, we also provided evidence that NO, rather than other byproducts of SNP, contributed to the improved performance of rice seedlings under Ni-stress. Collectively, our results conclude that exogenous SNP-mediated modulation of endogenous NO enhanced rice tolerance to Ni-stress by restricting Ni accumulation, maintaining photosynthetic performance and reducing oxidative damage through improved antioxidant system, thereby suggesting NO as an effective stress regulator in mitigating Ni-toxicity in economically important rice, and perhaps in other crop plants.


Assuntos
Níquel/toxicidade , Óxido Nítrico/metabolismo , Oryza/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Poluentes do Solo/toxicidade , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Ácido Ascórbico/metabolismo , Catalase/metabolismo , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Níquel/metabolismo , Doadores de Óxido Nítrico , Nitroprussiato/farmacologia , Oryza/genética , Oryza/metabolismo , Peroxidase/metabolismo , Fotossíntese/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Poluentes do Solo/metabolismo , Superóxido Dismutase/metabolismo
12.
Chemosphere ; 178: 212-223, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28324842

RESUMO

The present study investigated the phenotypical, physiological and biochemical changes of rice plants exposed to high selenium (Se) concentrations to gain an insight into Se-induced phytotoxicity. Results showed that exposure of rice plants to excessive Se resulted in growth retardation and biomass reduction in connection with the decreased levels of chlorophyll, carotenoids and soluble proteins. The reduced water status and an associated increase in sugar and proline levels indicated Se-induced osmotic stress in rice plants. Measurements of Se contents in roots, leaf sheaths and leaves revealed that Se was highly accumulated in leaves followed by leaf sheaths and roots. Se also potentiated its toxicity by impairing oxidative metabolism, as evidenced by enhanced accumulation of hydrogen peroxide, superoxide and lipid peroxidation product. Se toxicity also displayed a desynchronized antioxidant system by elevating the level of glutathione and the activities of superoxide dismutase, glutathione-S-transferase and glutathione peroxidase, whereas decreasing the level of ascorbic acid and the activities of catalase, glutathione reductase and dehydroascorbate reductase. Furthermore, Se triggered methylglyoxal toxicity by inhibiting the activities of glyoxalases I and II, particularly at higher concentrations of Se. Collectively, our results suggest that excessive Se caused phytotoxic effects on rice plants by inducing chlorosis, reducing sugar, protein and antioxidant contents, and exacerbating oxidative stress and methylglyoxal toxicity. Accumulation levels of Se, proline and glutathione could be considered as efficient biomarkers to indicate degrees of Se-induced phytotoxicity in rice, and perhaps in other crops.


Assuntos
Antioxidantes/metabolismo , Biomassa , Oryza/efeitos dos fármacos , Estresse Oxidativo , Selênio/toxicidade , Biomarcadores/metabolismo , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Pressão Osmótica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estruturas Vegetais/química , Prolina/metabolismo , Selênio/análise
13.
Sci Rep ; 5: 14078, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26361343

RESUMO

We investigated the physiological and biochemical mechanisms by which H2S mitigates the cadmium stress in rice. Results revealed that cadmium exposure resulted in growth inhibition and biomass reduction, which is correlated with the increased uptake of cadmium and depletion of the photosynthetic pigments, leaf water contents, essential minerals, water-soluble proteins, and enzymatic and non-enzymatic antioxidants. Excessive cadmium also potentiated its toxicity by inducing oxidative stress, as evidenced by increased levels of superoxide, hydrogen peroxide, methylglyoxal and malondialdehyde. However, elevating endogenous H2S level improved physiological and biochemical attributes, which was clearly observed in the growth and phenotypes of H2S-treated rice plants under cadmium stress. H2S reduced cadmium-induced oxidative stress, particularly by enhancing redox status and the activities of reactive oxygen species and methylglyoxal detoxifying enzymes. Notably, H2S maintained cadmium and mineral homeostases in roots and leaves of cadmium-stressed plants. By contrast, adding H2S-scavenger hypotaurine abolished the beneficial effect of H2S, further strengthening the clear role of H2S in alleviating cadmium toxicity in rice. Collectively, our findings provide an insight into H2S-induced protective mechanisms of rice exposed to cadmium stress, thus proposing H2S as a potential candidate for managing toxicity of cadmium, and perhaps other heavy metals, in rice and other crops.


Assuntos
Cádmio/toxicidade , Sulfeto de Hidrogênio/farmacologia , Oryza/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Ácido Ascórbico/metabolismo , Biomassa , Carotenoides/metabolismo , Clorofila/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Lipoxigenase/metabolismo , Malondialdeído/metabolismo , Oryza/química , Oryza/metabolismo , Oxirredutases/metabolismo , Fenótipo , Folhas de Planta/química , Folhas de Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Taurina/análogos & derivados , Taurina/farmacologia
14.
Sci Rep ; 5: 11433, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26073760

RESUMO

In this study, we examined the possible mechanisms of trehalose (Tre) in improving copper-stress (Cu-stress) tolerance in rice seedlings. Our findings indicated that pretreatment of rice seedlings with Tre enhanced the endogenous Tre level and significantly mitigated the toxic effects of excessive Cu on photosynthesis- and plant growth-related parameters. The improved tolerance induced by Tre could be attributed to its ability to reduce Cu uptake and decrease Cu-induced oxidative damage by lowering the accumulation of reactive oxygen species (ROS) and malondialdehyde in Cu-stressed plants. Tre counteracted the Cu-induced increase in proline and glutathione content, but significantly improved ascorbic acid content and redox status. The activities of major antioxidant enzymes were largely stimulated by Tre pretreatment in rice plants exposed to excessive Cu. Additionally, increased activities of glyoxalases I and II correlated with reduced levels of methylglyoxal in Tre-pretreated Cu-stressed rice plants. These results indicate that modifying the endogenous Tre content by Tre pretreatment improved Cu tolerance in rice plants by inhibiting Cu uptake and regulating the antioxidant and glyoxalase systems, and thereby demonstrated the important role of Tre in mitigating heavy metal toxicity. Our findings provide a solid foundation for developing metal toxicity-tolerant crops by genetic engineering of Tre biosynthesis.


Assuntos
Antioxidantes/farmacologia , Cobre/toxicidade , Oryza/efeitos dos fármacos , Plântula/efeitos dos fármacos , Trealose/farmacologia , Ácido Ascórbico/agonistas , Ácido Ascórbico/biossíntese , Transporte Biológico/efeitos dos fármacos , Glutationa/agonistas , Glutationa/biossíntese , Lactoilglutationa Liase/biossíntese , Malondialdeído/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Oxirredução , Estresse Oxidativo , Fotossíntese/efeitos dos fármacos , Prolina/agonistas , Prolina/biossíntese , Aldeído Pirúvico/antagonistas & inibidores , Aldeído Pirúvico/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Estresse Fisiológico , Tioléster Hidrolases/biossíntese
15.
Plant Signal Behav ; 10(3): e991570, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25897471

RESUMO

Nitric oxide (NO) and glutathione (GSH) are 2 vital components of the antioxidant system that play diverse roles in plant responses to abiotic stresses. Recently, we have reported that exogenous supply of both these molecules reduced copper (Cu) toxicity in rice seedlings. Individual as well as co-treatment of sodium nitroprusside (SNP: a NO donor) and GSH with Cu significantly mitigated the adverse effects of Cu, evident in the reduced level of oxidative markers such as H2O2, superoxide (O2(·-)), malondialdehyde (MDA), and proline (Pro). GSH content and most of the antioxidative and glyoxalase enzymes were up-regulated upon Cu stress, indicating their responses were co-related with the level of stress. Our results indicated that direct ROS scavenging, reduced Cu uptake, and the balanced antioxidative and glyoxalase systems, at least in part, successfully executed NO- and GSH-mediated alleviation of Cu toxicity in rice seedlings. In addition, the combined effect of adding SNP and GSH together was more efficient than the effect of adding them individually. Here, we are speculating that 1) GSH and Pro could be used as potential markers for copper stress, and 2) adding SNP and GSH might produce S-nitrosoglutathione (GSNO) which could be a source of bioactive NO and may affect many regulatory processes involved in Cu-stress tolerance. We further note that the combined effect of adding SNP and GSH was pronounced in inhibiting the uptake and translocation of Cu in rice seedlings.


Assuntos
Adaptação Fisiológica , Antioxidantes/metabolismo , Cobre/toxicidade , Glutationa/metabolismo , Óxido Nítrico/metabolismo , Oryza/metabolismo , Estresse Oxidativo , Cobre/metabolismo , Glutationa/farmacologia , Doadores de Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/metabolismo , Nitroprussiato/farmacologia , Oryza/efeitos dos fármacos , Prolina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , S-Nitrosoglutationa/metabolismo , Plântula/metabolismo , Regulação para Cima
16.
Protoplasma ; 252(2): 461-75, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25164029

RESUMO

Salinity in the form of abiotic stress adversely effects plant growth, development, and productivity. Various osmoprotectants are involved in regulating plant responses to salinity; however, the precise role of trehalose (Tre) in this process remains to be further elucidated. The present study investigated the regulatory role of Tre in alleviating salt-induced oxidative stress in hydroponically grown rice seedlings. Salt stress (150 and 250 mM NaCl) for 72 h resulted in toxicity symptoms such as stunted growth, severe yellowing, and leaf rolling, particularly at 250 mM NaCl. Histochemical observation of reactive oxygen species (ROS; O2 (∙-) and H2O2) indicated evident oxidative stress in salt-stressed seedlings. In these seedlings, the levels of lipoxygenase (LOX) activity, malondialdehyde (MDA), H2O2, and proline (Pro) increased significantly whereas total chlorophyll (Chl) and relative water content (RWC) decreased. Salt stress caused an imbalance in non-enzymatic antioxidants, i.e., ascorbic acid (AsA) content, AsA/DHA ratio, and GSH/GSSG ratio decreased but glutathione (GSH) content increased significantly. In contrast, Tre pretreatment (10 mM, 48 h) significantly addressed salt-induced toxicity symptoms and dramatically depressed LOX activity, ROS, MDA, and Pro accumulation whereas AsA, GSH, RWC, Chl contents, and redox status improved considerably. Salt stress stimulated the activities of SOD, GPX, APX, MDHAR, DHAR, and GR but decreased the activities of CAT and GST. However, Tre-pretreated salt-stressed seedlings counteracted SOD and MDHAR activities, elevated CAT and GST activities, further enhanced APX and DHAR activities, and maintained GPX and GR activities similar to the seedlings stressed with salt alone. In addition, Tre pretreatment enhanced the activities of methylglyoxal detoxifying enzymes (Gly I and Gly II) more efficiently in salt-stressed seedlings. Our results suggest a role for Tre in protecting against salt-induced oxidative damage attributed to reduced ROS accumulation, elevation of non-enzymatic antioxidants, and co-activation of the antioxidative and glyoxalase systems.


Assuntos
Oryza/fisiologia , Tolerância ao Sal , Trealose/farmacologia , Ácido Ascórbico/metabolismo , Glutationa/metabolismo , Lactoilglutationa Liase/metabolismo , Peroxidação de Lipídeos , Malondialdeído/metabolismo , Oryza/efeitos dos fármacos , Estresse Oxidativo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio
17.
Protoplasma ; 251(6): 1373-86, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24752795

RESUMO

Nitric oxide (NO) and glutathione (GSH) regulate a variety of physiological processes and stress responses; however, their involvement in mitigating Cu toxicity in plants has not been extensively studied. This study investigated the interactive effect of exogenous sodium nitroprusside (SNP) and GSH on Cu homeostasis and Cu-induced oxidative damage in rice seedlings. Hydroponically grown 12-day-old seedlings were subjected to 100 µM CuSO4 alone and in combination with 200 µM SNP (an NO donor) and 200 µM GSH. Cu exposure for 48 h resulted in toxicity symptoms such as stunted growth, chlorosis, and rolling in leaves. Cu toxicity was also manifested by a sharp increase in lipoxygenase (LOX) activity, lipid peroxidation (MDA), hydrogen peroxide (H2O2), proline (Pro) content, and rapid reductions in biomass, chlorophyll (Chl), and relative water content (RWC). Cu-caused oxidative stress was evident by overaccumulation of reactive oxygen species (ROS; superoxide (O2 (•-)) and H2O2). Ascorbate (AsA) content decreased while GSH and phytochelatin (PC) content increased significantly in Cu-stressed seedlings. Exogenous SNP, GSH, or SNP + GSH decreased toxicity symptoms and diminished a Cu-induced increase in LOX activity, O2 (•-), H2O2, MDA, and Pro content. They also counteracted a Cu-induced increase in superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), and glyoxalase I and glyoxalase II activities, which paralleled changes in ROS and MDA levels. These seedlings also showed a significant increase in catalase (CAT), glutathione peroxidase (GPX), dehydroascorbate reductase (DHAR), glutathione S-transferase (GST) activities, and AsA and PC content compared with the seedlings stressed with Cu alone. Cu analysis revealed that SNP and GSH restricted the accumulation of Cu in the roots and leaves of Cu-stressed seedlings. Our results suggest that Cu exposure provoked an oxidative burden while reduced Cu uptake and modulating the antioxidant defense and glyoxalase systems by adding SNP and GSH play an important role in alleviating Cu toxicity. Furthermore, the protective action of GSH and SNP + GSH was more efficient than SNP alone.


Assuntos
Cobre/metabolismo , Cobre/toxicidade , Glutationa/farmacologia , Nitroprussiato/farmacologia , Oryza/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Plântula/metabolismo , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Biomassa , Catalase/metabolismo , Clorofila/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Lactoilglutationa Liase/metabolismo , Lipoxigenase/metabolismo , Malondialdeído/metabolismo , Oryza/efeitos dos fármacos , Fitoquelatinas/metabolismo , Prolina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plântula/efeitos dos fármacos , Plântula/enzimologia , Superóxido Dismutase/metabolismo , Água/metabolismo
18.
Ecotoxicology ; 22(6): 959-73, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23579392

RESUMO

The present study investigated the effect of salicylic acid (SA) on toxic symptoms, lipid peroxidation, reactive oxygen species generation and responses of antioxidative and glyoxalase systems in rice seedlings grown hydroponically under copper (Cu) stress for 48 h. Exposures of 75 and 150 µM Cu(2+) caused toxicity symptoms (chlorosis, necrosis and rolling in leaves), sharp increases in malondialdehyde (MDA), hydrogen peroxide (H2O2) contents and lipoxygenase (LOX) activity with concomitant reductions of chlorophyll (Chl) and relative water content (RWC). Both levels of Cu decreased ascorbic acid (AsA), glutathione (GSH), non-protein thiol (NPT) and proline contents in roots but rather increased in leaves except that AsA decreased in leaves too. These results together with overaccumulation of superoxide (O 2 (•-) ) and H2O2 in leaves revealed that Cu exposures induced oxidative stress. Contrary, SA-pretreatment (100 µM for 24 h) reduced toxicity symptoms and diminished Cu-induced increases in LOX activity, H2O2, MDA and proline contents while the levels of RWC, Chl, AsA and redox ratios were elevated. Higher levels of GSH and NPT were also observed in roots of SA-pretreated Cu-exposed seedlings. SA-pretreatment also exerted its beneficial role by inhibiting the Cu upward process. Studies on antioxidant enzymes showed that SA further enhanced the activities of superoxide dismutase, ascorbate peroxidase, glutathione reductase and glutathione peroxidase, and also elevated the depressed activities of catalase, dehydroascorbate reductase and glutathione S-transferase particularly at 150 µM Cu(2+) stress. In addition, the activity of glyoxalase system (glyoxalase I and II) was further elevated by SA pretreatment in the Cu-exposed seedlings. These results concluded that SA-mediated retention of Cu in roots and enhanced capacity of both antioxidative and glyoxalase systems might be associated with the alleviation of Cu-toxicity in rice seedlings.


Assuntos
Cobre/toxicidade , Lactoilglutationa Liase/metabolismo , Oryza/efeitos dos fármacos , Ácido Salicílico/farmacologia , Plântula/efeitos dos fármacos , Tioléster Hidrolases/metabolismo , Antioxidantes/farmacologia , Ascorbato Peroxidases/metabolismo , Ácido Ascórbico/análise , Catalase/metabolismo , Clorofila/metabolismo , Glutationa/análise , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Peróxido de Hidrogênio/análise , Lipoxigenases/metabolismo , Malondialdeído/análise , Oryza/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Prolina/análise , Espécies Reativas de Oxigênio/metabolismo , Plântula/enzimologia , Superóxido Dismutase/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA